Surround antagonism in macaque cone photoreceptors.

نویسندگان

  • Jan Verweij
  • Eric P Hornstein
  • Julie L Schnapf
چکیده

Center-surround antagonism is a hallmark feature of the receptive fields of sensory neurons. In retinas of lower vertebrates, surround antagonism derives in part from inhibition of cone photoreceptors by horizontal cells. Using whole-cell patch recording methods, we found that light-evoked responses of cones in macaque monkey were antagonized when surrounding cones were illuminated. The spatial and spectral properties of this antagonism indicate that it results from inhibition by horizontal cells. It has been suggested that horizontal cell inhibition is mediated by the neurotransmitter GABA. The inhibition observed here, however, was inconsistent with a GABA-gated chloride conductance mechanism. Instead, surround illumination evoked an increase in calcium conductance and calcium-activated chloride conductance in cones. We expect that these conductances modulate neurotransmitter release at the cone synapse and increase visual sensitivity to spatial contrast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: evidence for the proton hypothesis of surround formation.

Negative feedback from horizontal cells to cone photoreceptors is regarded as the critical pathway for the formation of the antagonistic surround of retinal neurons, yet the mechanism by which horizontal cells accomplish negative feedback has been difficult to determine. Recent evidence suggests that feedback uses a novel, non-GABAergic pathway that directly modulates the calcium current in con...

متن کامل

Commentary Center-surround Antagonism Mediated by Proton Signaling at the Cone Photoreceptor Synapse

The identity of the messenger that carries the inhibitory surround receptive field signal from horizontal cells to cone photoreceptors has eluded retinal neurobiologists for nearly three decades. Encoded in horizontal cell membrane potential, the feedback signal presynaptically inhibits neurotransmitter release at the cone terminal. An interesting collection of candidate mechanisms and messenge...

متن کامل

Circuitry for color coding in the primate retina.

Human color vision starts with the signals from three cone photoreceptor types, maximally sensitive to long (L-cone), middle (M-cone), and short (S-cone) wavelengths. Within the retina these signals combine in an antagonistic way to form red-green and blue-yellow spectral opponent pathways. In the classical model this antagonism is thought to arise from the convergence of cone type-specific exc...

متن کامل

Center-surround Antagonism Mediated by Proton Signaling at the Cone Photoreceptor Synapse

The identity of the messenger that carries the inhibitory surround receptive field signal from horizontal cells to cone photoreceptors has eluded retinal neurobiologists for nearly three decades. Encoded in horizontal cell membrane potential, the feedback signal presynaptically inhibits neurotransmitter release at the cone terminal. An interesting collection of candidate mechanisms and messenge...

متن کامل

Blue-yellow opponency in primate S cone photoreceptors.

The neural coding of human color vision begins in the retina. The outputs of long (L)-, middle (M)-, and short (S)-wavelength-sensitive cone photoreceptors combine antagonistically to produce "red-green" and "blue-yellow" spectrally opponent signals (Hering, 1878; Hurvich and Jameson, 1957). Spectral opponency is well established in primate retinal ganglion cells (Reid and Shapley, 1992; Dacey ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 32  شماره 

صفحات  -

تاریخ انتشار 2003